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Abstract: Managing Elderly type 2 diabetes (E-T2D) is challenging due to geriatric conditions (e.g., co-
morbidity, multiple drug intake, etc.), and personalization becomes paramount for precision medicine.
This paper presents a human digital twin (HDT) framework to manage E-T2D that exploits various
patient-specific data and builds a suite of models exploiting the data for prediction and management
to personalize diabetes treatment in E-T2D patients. These models include mathematical and deep-
learning ones that capture different patient aspects. Consequently, the HDT virtualizes the patient
from different viewpoints using an HDT that mimics the patient and has interfaces to update the
virtual models simultaneously from measurements. Using these models the HDT obtains deeper
insights about the patient. Further, an adaptive patient model fusing this information and a learning-
based model predictive control (LB-MPC) algorithm are proposed. The geriatric conditions are
captured as model parameters and constraints while solving the LB-MPC to personalize the insulin
infusion for E-T2D management. The HDT is deployed on and illustrated with 15 patients using
clinical trials and simulations. Our results show that HDT helps improve the time-in-range from
3–75% to 86–97% and reduces insulin infusion by 14–29%.

Keywords: Elderly type 2 diabetes (E-T2D); internet of medical things (IoMT); digital twin (DT);
human digital twin (HDT); learning-based model predictive control (LB-MPC); personalization;
precision medicine

1. Introduction

Type 2 diabetes (T2D) is characterized by reduced insulin secretion from the pancreas
and is widely prevalent in low-and-middle-income countries, and also industrialized
countries like the US [1]. Unlike type 1 diabetes (T1D), where patients are characterized
by a complete lack of insulin secretion, in T2D relative insufficiency and/or inefficiency
of insulin is common. Therefore, T2D requires continuous monitoring due to intermittent
behavior and influences of certain factors: food, activity, etc., leading to frequent hyper
and hypo events. This leads to many challenges in understanding and managing T2D
(T2D). The problem becomes even more challenging in elderly people due to the changes
observed with the aging, a.k.a geriatric conditions [2,3]. These geriatric-specific conditions
are co-morbidity, multiple drug intake, reduced activity levels, pronounced diet influences,
variability in nutrient absorption with age, hormonal changes, and other aspects. These
factors evolve with age and progress as well, thereby making the blood glucose levels (BGL)
highly unpredictable and intermittent. Similarly, insulin efficiency could also vary within
a patient or among elderly patients with similar conditions. Therefore, personalization
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becomes the cornerstone for managing elderly T2D (E-T2D) effectively. In particular,
precise insulin infusion considering the underlying geriatric conditions for managing E-
T2D becomes important. However, this is cumbersome, as capturing certain geriatric
factors to develop insights by itself is insufficient, and existing studies have not completely
explored these specific aspects. This points out to an urgent need to propose a holistic
approach for personalization that provides deep insights about various aspects and fuses
them to decide the insulin dosing for BGL management.

1.1. Existing Methods

Traditionally, oral hypoglycemic agents (OHAs) and insulin infusion are two widely
used approaches in managing T2D. The OHA in the form of pills is recommended for
patients who are newly diagnosed or not insulin dependent. Nevertheless, over long time
periods, these patients become insulin dependent as well with age or other factors [4,5].
Therefore, eventually, insulin administration becomes the treatment option for most pa-
tients. In such cases, insulin infusion could be either manual or automatic. In manual
infusion, the patient or caregiver infuses the insulin based on the diabetologist’s recom-
mendation. The interventions are intermittent and open-loop in the sense that the BGL is
not continuously monitored. Therefore, conventional insulin therapy will have multiple
challenges in those with advanced T2D.

Automated insulin delivery, also known as an artificial pancreas (AP), is touted as a
solution for managing T2D [6]. The AP continuously monitors interstitial glucose level
(IGL) by using a continuous glucose monitoring (CGM) sensor and infuses insulin to
manage diabetes to be within 70–180 mg/dL (called the euglycemic range), using a control
algorithm. Control algorithms for computing insulin dosing are the heart of AP systems.
Different control algorithms for infusing insulin have been proposed both in practice
and the literature. Existing control algorithms can be broadly discerned to be reactive
and predictive. Reactive control action includes control algorithms such as proportional-
integral and derivative (PID), fuzzy, and other approaches that compute insulin based on
current measurements and lack predictive capabilities [7–9]. Some additional capabilities
are available in the reactive controllers as well. For example, the Medtronic 722 has a PID
controller with features such as automatic insulin shut-off when the BGL reaches closer to
the lower target value and could include meal announcements in the insulin infusion plans.
Still, these actions are based on measurements and not on patient-specific data, which
is becoming a shortcoming in elderly patients. Predictive controllers, on the other hand,
use patient models to study future behaviors and compute insulin infusion to manage
T2D. The model predictive controller (MPC), a sophisticated control algorithm based on
optimization routine and patient model, is revealed to be a promising solution [10,11]. This
is mainly due to the fact that the MPC uses an approximate patient model to compute the
insulin infusion and could embed real-time measurements in such computations. The role
of an MPC to include aspects such as food influences and physical activity has been
proposed in [12–14].

Though an MPC provides significant benefits and is suited for personalization, the
need for patient models makes its design overwhelming. This is mainly due to model
parameters whose computations require simulations or measurements (e.g., plasma insulin)
that are difficult to obtain. Despite these difficulties, Omnipod 5 and Tandem t:slim X2
Control IQ are two successful MPC implementations available as commercial solutions [15].
Studies reporting on their safety and efficacy have been proposed in [16]. In spite of this
success, patient-specific models and embedding aspects such as comorbidity still remain a
challenge. Consequently, MPC implementation is relatively quite cumbersome to personal-
ize for particular patients due to the need for computing model parameters. In practice,
obtaining a patient model is difficult, and existing models rely on data such as plasma
insulin that could be obtained from laboratory studies only. For this reason, simulators
are being proposed and used for studying MPC efficacy. However, designing an MPC is
limited due to the need for complex patient models (e.g., nonlinear), model parameters, op-
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timization routines (nonlinear programming), and implementation in resource-constrained
hardware (embedded processors with limited memory and processing power). This lends
several challenges to personalization, and the focus is still open to obtaining models that
are simple yet able to comprehensively capture BGL evolution, as this would also make
optimization models simple and easier to be solved in embedded hardware.

Recent research is more focused on personalizing the AP [17]. To this extent, patient-
specific models are proposed that capture certain intricate aspects (e.g., insulin–glucose
interaction). A personalized AP for T1D with validation trials up to 6 months on individual
patients has been reported in [18,19]. More recently, several long-period trials lasting
months have been outlined in [20,21]. However, to our best knowledge, these personaliza-
tion efforts are not oriented towards E-T2D management. This is mainly due to the fact that
obtaining personalized patient models factoring geriatric conditions is rather cumbersome,
and multiple models may be required that captures specific viewpoint and provide various
facets to the patient model. Clearly, handling E-T2D requires novel approaches going
beyond traditional ones currently used for managing T2D. Moreover, as various facets need
to be considered continuously, a framework is necessitated in a complex model, and certain
modules can be turned off as required—a general approach that is widely used. Further,
such a framework requires capturing sensor and patient-specific data, knowledge creation
from raw data, discerning patterns, understanding outcomes, and using it to manage as
well as simultaneously personalize the E-T2D treatment. A framework is required for
depicting the patient from a different viewpoint and also having capabilities to obtain the
data required for orchestrating these different models. Notwithstanding this, to our best
knowledge, a framework to personalize and manage E-T2D is completely lacking and has
not been studied in the literature.

The digital twin (DT) is a framework that could fuse multiple models, data, and pro-
vide interfaces to virtualize physical entities with different viewpoints. In essence, the DT
creates a digital replica of a physical object, process, or system orchestrated through a suite
of models that exchange information with physical entities in real-time [22]. The DT was
conceptualized around 2003 by Grieves for product life-cycle management in manufactur-
ing, and it proposed a three-dimensional concept [23]. The concept was extended with five
entities: physical object, digital representation, interconnections, data, and services [24].
The importance of the DT could be underlined by the fact that it is touted as one of the three
emerging technologies in 2020 as per the IEEE Computer Society https://www.hpcwire.
com/off-the-wire/ieee-computer-society-unveils-its-2022-technology-predictions/ (ac-
cessed on 2 December 2022). Major drivers for their proliferation are the Internet of Things
(IoT), artificial intelligence (AI), machine learning, and big-data paired with digital and real-
objects. The DT integrates these technologies appropriately for real-time data aggregation,
system analysis, status monitoring, knowledge creation, providing deeper insights, risk
management, bespoke displays, informed actions, agile situation management strategies,
prediction, and others ([25–27] and references therein). Consequently, a generalized concept
and notion for DT are still evolving. Notwithstanding this, the DT is proliferating other
domains such as space cooling/heating [28,29], wind turbine fault diagnosis [30–32], bio-
processes [33,34], energy [35], oil and gas [36], automotive [37–39], infrastructure [40,41],
and defense [42] to name a few. More recently, DT concepts are being proposed in health-
care and medicine and are expected to provide significant advantages [43,44]. Mainly the
DT is expected to personalize treatment pathways.

Digital Twin in Healthcare and Medicine

Human digital twins (HDTs) for healthcare are emerging as a cornerstone for per-
sonalizing treatments [45,46]. The prevalence of the IoT devices that can connect to user
devices to collect, store, process, and notify in real-time through even mobile applications
or embedded sensors is becoming a norm. By combining the patient replica with real-time
data, it is possible to get deep insights into the patients’ conditions, manage conditions,
predict future occurrences, monitor patients’ current conditions, and make informative
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decisions. Furthermore, simulations, dynamic models, and domain informed data-based
models could help increase intelligence to manage, and alert users.

Amongst the relevant research in this domain, a reference model for DT healthcare
was proposed in [44]. The framework enabled self-adaptation and autonomic computing
for continuous monitoring and forecasting of chronic disease diabetes. However, process
implementation was lacking. A cloud-based DT for elderly healthcare was proposed in [47].
Cloud-DTH was a reference framework that combined the cloud model with the DT model.
This enabled individualized healthcare. However, the case studies presented lacked a
performance evaluation and results illustrating this aspect. Karkara et al. [48] proposed DT
for hospital systems using discrete-event simulation and IoT devices. Flexsim HC software
was used to test the feasibility of the proposed methodology with different scenarios.
However, the DT has not been explicitly brought out in the investigation.

Detecting seizures before they surface using machine learning models has been pre-
sented in [49] through data collected from drug-resistant epilepsy patients. The authors
proposed a deep-epileptic seizure detection using a surrogate gradient descent-based
approach. However, complexity and implementation aspects have not been studied. Per-
sonalized healthcare using an HDT for personalized healthcare has been reviewed in [50].
The HDT is a new direction in research that provides tools to provide proactive, prescriptive,
accurate, and efficient personalized healthcare system (PHS) to patients using DT concepts.

The HDT has three parts: patient (PT), virtual digital twin (VT), and PT–VT interac-
tions. However, orchestrating an HDT requires novel data sources, new models, and tech-
niques to achieve personalized management. The main advantage of an HDT is its ability
to handle both historical and real-time data that is missing in current approaches. With
an HDT, management could be tailored to focus on a particular individual’s contextual
data. The role of digital twin technology for Healthcare 4.0 was studied in [43].

Existing works clearly point out an HDT’s ability to personalize treatment by com-
bining various data sources, models, and techniques. An HDT could leverage data to
optimize patient-specific treatment plans, recommend life-style modifications, improve
management, and reduce overall costs incurred by E-T2D patients. Furthermore, an HDT
provides prescriptions by predicting future patient states and preventing hyper and hy-
poglycemic events. However, there exist some pertinent questions to be answered for
successful HDT-based personalized E-T2D management. These questions include whether
underlying influences on E-T2D, such as comorbidity, multiple drug intake, diet influences,
activity levels, and other patient-specific aspects, could be used for E-T2D management and
whether inter- and intra-patient variations could be detected using temporal data patterns
to provide deeper insights. In addition, extracting precise medical data and techniques to
obtain models that could capture aspects that are contextual to a particular patient needs to
be evolved.

Our objective is to illustrate the role of an HDT in managing E-T2D through patient
virtualization from different perspectives for delivering precision insulin. However, this
requires personalization and modeling different aspects and fusing various patient-relevant
data. To this extent, the HDT builds a suite of models to gain deeper insights on the
patient. These models exploit the raw data and convert them to knowledge by mining them.
The HDT’s ability to exploit historical, contextual, image, and other forms of data to create
deeper insights about the patient becomes a major enabler for precision insulin. Finally,
to prove an HDT’s ability to manage E-T2D, clinical trials to generate patient models and
simulation studies to show that precision insulin delivery are used as illustrations. Our
main contributions are:

(i) A new HDT framework and architecture towards personalizing E-T2D management
with capabilities to aggregate data, a suite of models that build intelligence on the
data, and an interface between the VT and PT.

(ii) An IoMT architecture to aggregate data vis-á-vis HDT for E-T2D management.
(iii) Modules for forecasting, food nutrient predictions, time-series trending, and other

intelligence required for managing E-T2D.
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(iv) An adaptive patient model that personalizes insulin infusion based on geriatric factors
and learning-based MPC (LB-MPC) that could embed the deep-learning models to
compute precise insulin infusion.

(v) Illustrate the HDT’s capability to manage E-T2D by modeling a personalized patient
model and embedding other aspects. To this extent, clinical data from patients are
collected for 14 days to obtain patient model and patient-specific contextual data
from 15 elderly patients. Using these models and data, simulations are performed to
illustrate the HDT’s ability to deliver precision insulin considering various aspects.

The paper is organized as follows: Section 1 introduces the concepts. Section 2 presents
a detailed description of the HDT framework architecture, and its components. Section 3
presents the HDT implementation aspects for the various modules. Section 4 presents the
clinical trial and simulation results. Section 5 summarizes the conclusion and future course
of the investigation.

2. HDT Framework Architecture

The paper proposes and implements an HDT framework for context-aware E-T2D to
enhance management and achieve deeper insights. The proposed HDT framework uses
IoT devices and sensors to aggregate data from elderly patients using an IoMT architecture.
Similarly, it builds a suite of models to capture different aspects of the E-T2D patient.
The models can be domain informed data-based models (e.g., machine learning), dynamical
models based on differential equations, or hybrid models that can represent a complex
nonlinear dynamical model of the elderly patient. Such models can capture specific aspects
of the patient. The tools along with the IoMT architecture, create a virtual replica of the
E-T2D patients and help to manage BGL within safe bounds. Furthermore, it enables
learning inter- and intra-personal variations by cooperating to learn data from similar
patients and within the same patient. It is to be noted here that such data is more frequent
and has higher data rates than typical clinical measures. This helps healthcare professionals,
patients, and caregivers to gain more insights to manage E-T2D.

Three basic entities of the HDT framework are Patient (PT), Virtual Twin (VT), and in-
terfaces. The PT is the patient who needs to be virtualized by using historical data, sensor
measurements, contextual data, images, and other data sources. The VT is the digital replica
of the PT that could be used for managing E-T2D. Interfaces map PT to VT and transfer
data (e.g., sensor measurements) or inferences (e.g., food influences on T2D). The PT and
VT need a reliable interface that enables the co-evolution of both the PT and VT. Together
PT, VT, and interfaces offer personalized healthcare services for E-T2D.

2.1. HDT Framework Components

The HDT framework shown in Figure 1 has four functional modules: (i) a data
module that is responsible for aggregating the current data, (ii) a prediction module that
provides future values based on historical and current data, (iii) a diagnostic module that
uses current measurements and predictions to discern actions to predict inter and intra-
patient variations and provides explanations for certain decisions and conditions, and (iv) a
management module that personalizes insulin infusion and maintains BGL within bounds,
whereas a module is a sub-block within the entity performing a particular task or providing
a service.
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Figure 1. HDT architecture.

2.2. Data Module

The data module has devices to communicate, receive, store, and retrieve sensed data.
To aggregate sensor data, an IoMT architecture is used to fuse IoT data with healthcare.
Using IoMT architecture, vital signs, blood glucose levels, annotated food images, activity,
and other sensed information are obtained. In addition, patient-centric contextual data
such as diabetes history, family history, co-morbidity, drugs or multiple drug consumption,
average calorie intake per day, and other data are collected. These data are aggregated and
stored in the database in the data layer. The sensors are connected to the edge node and
interfaced with the cloud. The database (DB) that contains all the patients’ data can be
internal or external. Data can be stored, retrieved, and used from the DB. The details of the
IoMT architecture, communication protocols, and communication services are discussed in
the next section.

2.3. Prediction Module

The prediction module uses the sensed information and historical data as inputs and
provides future predictions of various aspects. Critically, providing predictions requires
accurate data. However, aggregating accurate data with IoMT architecture and devices is
challenging. This is mainly due to the fact that IoMT uses compact sensors and modules
that have limited computing and memory power. Therefore, methods for data handling
and preparing the data for extracting additional features to be used for predictions are
required. The predictive module components—data handling and data preparation—are
used to this extent.

The data-handling component uses data imputation methods such as filling average
values, past samples, or future samples. To this extent, it uses mathematical tools such
as auto-correlation, partial auto-correlation, variance, and standard deviation to test the
accuracy of the data imputation method. Second, the data preparation components provide
scaling and feature extraction and study statistical aspects, such as average, minimum value,
maximum value, variations from maximum to minimum, and others. These statistical
measures provide valuable insights into individual patients and are important for E-T2D
management and the detection of anomalies.

The data profiling component uses a set of rules to provide the data required for
prediction algorithms. The rules are implemented in the framework depending on the data
to be used as input to a particular prediction algorithm. Temporal data predictions and
pattern recognition from input data are required for understanding geriatric conditions’
effect on the BGL. In addition, the structural time-series component is a prediction method
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used to understand periodicity, cycles, average value, trend, and other information that
could be obtained, which is critical for making predictions of the future states of the patient.
Food image recognition obtains food images and recipe data to understand the nutrient
intake of a particular patient. This information is used to understand the food influences
on the BGL, and it estimates the carbohydrate (CHO) intake from the data. The level and
type of physical activity (e.g., standing, sitting, and walking) detection are done by using
the sensor measurements. The sensor tag is used to this extent. A detailed explanation of
the activity detection is avoided here, considering the focus of the paper, and readers are
referred to [12] for further data.

2.4. Diagnostic Module

The diagnostic module provides valuable insights from the data module and pre-
diction module. It has components that crunch predictions and measurement data to
provide valuable insights. The diagnostic tool can provide insights into time-series patterns
based on influencing factors or could even explain individual samples and their outcomes.
To diagnose patterns, a matrix profile-based analysis is used, and to detect outcomes from
individual samples, explainable artificial intelligence techniques are employed. These tools
provide capabilities such as motif discovery, explanations of hyper and hypo conditions,
and others. Similarly, the diagnostic tools have inference rules that help detect time-series
patterns of different events.

Similarly, to detect CHO and food nutrient-related aspects, queries are added to
food images, and annotations are created for the images based on user feedback. This
helps overarching current food image processing tools with feedback from the user. Con-
sequently, nutrient predictions and their accuracy could be improved. The diagnostic
module performs this action. Considering the brevity of the paper, discussions on food
image processing are avoided here. The output of the diagnostic tool is the input to the
management module.

2.5. Management Module

The management module aids precision medicine by making suitable recommenda-
tions to physicians and caregivers. This way, the module helps personalize the insulin
infusion, food recommendations, activity levels, and other aspects. Data fusion algorithms
combine inferences from the personalization component with a personalized patient model
to compute model parameters. However, these parameters capture the influences of the
patient-specific aspect that could change over time. An adaptive patient model captures
the dynamic influences of geriatric factors on patients. The personalized patient twin is
obtained from the parameter estimation component. Here the contextual data is also em-
bedded in the computation. Using the personalized E-T2D management twin, personalized
insulin infusion is computed using the management component to maintain BGL within
specified bounds. The metric estimator is used to compute time-in-range, hyper and hypo
events, model errors, or other such factors. Insulin dosage reduction and other metrics can
be evaluated using the time spent in hypo, hyper, and Time in Range (TIR) conditions

The HDT framework presented above leads to new data, novel models that create
additional knowledge, and improved decision support through new degrees of freedom.
The three aspects are illustrated in Figure 2. Different components of HDT enable new
data streams, novel models that use these data, and new variables that could be used for
managing E-T2D. However, for the rest of our analysis, the treatment method is based on
precision insulin infusion alone. Other aspects, such as behavioral interventions, are not
considered in our analysis.
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Figure 2. Precision Treatment Methods Through HDT—The HDT framework leads to new data,
novel models that create additional knowledge, and improved decision support through new degrees
of freedom.

3. HDT Implementation

This section describes the HDT implementation aspects. Detailed discussions on the
components and their realization are provided in this section.

3.1. IoMT for Data Module

The IoMT blends medical devices with the IoT as depicted in Figure 3. Medical devices
have different communication requirements, such as personal area network (PAN)-based
communication for transmitting patient data. Protocols such as Bluetooth low energy (BLE),
near field communication (NFC), or bluetooth are examples of PAN. These devices generally
transmit information reliably only over small distances. However, this information needs
to be transmitted to longer distances for processing. Therefore, edge nodes are required
to connect to PAN and be able to transmit the data to the cloud or other platforms. The
edge nodes connect with sensors on one hand and have WiFi connections to connect with
cloud platforms on the other. Further, as wearable sensors are commonplace today, the
IoMT architecture should be flexible enough to integrate them on-the-fly. Measurements
collected from IoMT architecture include vital signs, blood glucose levels, or other physical
data about the patient. Moreover, HDTs require cloud services for data collection, and the
IoMT architecture requires these capabilities. In what follows, the IoMT architecture and
its components are discussed.

The IoMT architecture for HDT has three layers: the perception, transfer, and applica-
tion layers. The perception layer has compact sensors to measure BGL using continuous
glucose sensors that use NFC and transmit the data to a mobile app. In addition, physical
activity is detected through an accelerometer, gyros, and wifi probes, along with vital signs:
(heart rate and blood oxygen saturation level) using MAX30100 based monitor, temperature
(DS18B20). For detecting activity, Texas Instruments’ sensor tag CCS2210 is used. It is
placed on the patient’s hip through suitable arrangements to prevent vibrations that cause
noisy measurements. The sensed information is collected by the sensor node using RF
and/or WiFi communication. The NRF24L01 and RFM69HCW modules are used for RF
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communication. The BGL is monitored using the FreeStyle Libre Pro sensor, which sends
the IGL readings to a mobile app using the NFC protocol. The sensing layer is limited
in communication range, and the sensor data needs to be communicated to the cloud to
off-load HDT computations.

The transfer layer is used for off-loading. The transfer layer has the edge node;
a Raspberry Pi 3 is used in our case. It communicates with the mobile app through WiFi to
collect data. The mobile app collects the data using NFC and BLE interfaces. Vital signs,
BGL, activity levels, and other information are transmitted to the mobile app using the
BLE. The mobile app uses WiFi connection to transmit the data to the edge node. Inside the
edge node, a small database is created using Python scripts to read, store, and retrieve data
every 15 min. In addition, the edge node can communicate with other edge devices and
the cloud via WiFi interfaces. The patient, doctors, caregivers, and other stakeholders can
connect to web interfaces to view their data in real-time or historical patterns. The IoMT
architecture proposed in this work is shown in Figure 3.

Figure 3. IoMT Architecture—Data transfer using IoT sensor devices from patients’ (left), mounted
devices to edge nodes (center) to the HDT architecture and finally to medical personnel and caretakers
using a mobile app.

The edge node also provides various services. These include hardware interface
services, monitoring services, hosting software (back-end and front-end), HDT-related
services, and cloud-based services. These services are orchestrated through a back-end
realized using Python scripts. In our implementation, our UI is created with Flask, a Python
based front end development tool that updates hypertext modeling language (HTML)
files. It uses the Jinja2 notation for coding the HTML files. The Flask application is used to
connect the front end with the back end that implements the services required for managing
the E-T2D interfacing with the cloud. A typical UI with data visualization is shown in
Figure 4.
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Figure 4. Simulated web page view of the patient’s data.

Similarly, the edge-node has an auto-device discovery system through which sensors
are connected to the edge devices. Even wearable sensors could communicate to the edge
node through BLE connections. Device discovery is part of the monitoring services. As each
sensor has a specific UUID for configuring and connecting to specific services in the IoMT,
not only device discovery but mapping to services could also be achieved. The edge node
with sensor and communication interfaces are shown in Figure 5. Each such edge unit is
deployed for the patients. The IoMT layer provides the interface to update the VT model for
the HDT. In addition, calibration, and device configuration are additional services provided
by the monitoring services in the edge node. The storage extension services offered by
the back-end manage the local MySQL database in the edge node and MongoDB database
ported to the cloud using Healthdocx, a cloud platform.

Figure 5. Real-time patient data collection system using temperature sensor, pulse oximeter, CGM,
sensor tag, and Edge device to display the data.
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The application layer implements the actual HDT in the edge node, and a virtual
version is available on the cloud. The back end uses the raw sensor data and transmits
it to the cloud to provide various insights and insulin recommendations to the patient
factoring in various personal aspects (e.g., co-morbidity). The different modules perform-
ing computation and the application layer of the IoMT architecture are discussed in the
next section.

3.2. Prediction Module

The prediction module has the following components (see Figure 1): (i) Time-series
forecasting, (ii) Food image recognition algorithm, and (iii) Structured time-series analysis.
These components use patient contextual data, clinical time-series data, and others to
predict future blood glucose evolution.

3.2.1. Multi-Time Step and Multi-Variate Time-Series Prediction

As stated earlier, blood glucose levels in elderly patients are influenced by various
geriatric factors. Understanding future BGL variations requires predictions using these
factors. Accurate prescriptions for personalized insulin to manage diabetes requires a BGL
forecast. Moreover, a forecast is required for multiple time steps in the future. Consequently,
multi-variate and multi-time step forecasting is required for predicting BGLs. However,
time-series forecasting for multi-variate and multi-time steps is quite different from other
regression models. First, the data sequencing and ordering are important. Second, multi-
variate and multi-time step forecast with conventional mathematical methods is rather
difficult. Third, patient-specific factors may introduce nonlinear and time-varying behavior.

Existing approaches for time-series forecasting: auto-regressive moving average, auto-
regressive integral moving average, auto-regressive exogenous, etc., lack the capability
to handle multivariate and multi-time step models. These models work when there is a
strong correlation between the current value and past sequences. However, with sudden
food intake or insulin dosing, the influences can be varied. Artificial neural network
(ANN) models could model time-series data. The recurrent neural network (RNN) is
a widely used method for time-series predictions. The RNNs predict the future output
based on past measurements and past outputs. Therefore, there is inherently a feedback
mechanism. Nevertheless, RNNs lack the capabilities to handle long-term dependencies,
as only past input is used as feedback. Further, their short memory makes them unsuitable
for time-series forecasting tasks. Besides, the RNNs lack control over past samples and
their relevance. In other words, the RNNs lack the capability to forget past samples
whose contribution towards current prediction is low. Other computational issues, such
as exploding and vanishing gradients, make them unsuitable for multi-time step and
multi-variate forecasting.

The Long–Short Term Memory (LSTM), a deep-learning model, is designed to over-
come vanishing and exploding gradient issues with RNNs [51]. Further, LSTM can handle
long delays, noise, and data loss, and has more degrees of freedom to tune the network.
Yet, LSTM-based multi-time step and multi-variate forecasting are still not fully realized.
This is primarily because current predictions have to be carried forward for computations
and are feedback as well. Therefore, error propagation happens both in forward and
feedback paths.

Our idea is to use LSTM for forecasting blood glucose levels for multi-time variate
and multi-time-steps. The inputs to the LSTM model are insulin infusion rate, food intake
as carbohydrate (CHO), and past time samples of blood glucose levels. The output is the
future blood glucose levels for the next 1 h. The LSTM captures the long-term temporal
correlations towards predicting the BGL variations for a pre-defined duration (1 h) and
sampling rate (15 min).

In essence, an LSTM is a recurrent neural network capable of sequence learning, which
combats the vanishing gradient problem that is characteristic of traditional recurrent neural
networks. This is achieved through a set of gates including input gates, forget gates,
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and output gates. Thus, given a time series sequence {s1, . . . , st, . . . sT}, the objective of
LSTM is to learn the temporal dependencies in {s1, s2, . . . , st−1} to predict st. The responses
of the various gates are given by,

it = σ(wi[ht−1, st] + bi) (1)

ft = σ
(

w f [ht−1, st] + b f

)
(2)

ot = σ(wo[ht−1, st] + bo) (3)

The hidden layer response of the network for the sequence st is then given by

ht = ot ∗ tanh(ct) (4)

where ot is given by Equation (3), and ct is the memory in the network that is given by

ct = ft ∗ ct−1 + it ∗ (tanh(wc[ht−1, st] + bc)) (5)

where wc and bc are the weights and biases for the memory gates, respectively. The memory
in the network (ct) helps in capturing the long-term dependencies to remember the past.
Thus, time-series data could be represented by LSTM through multiple gates, and it holds
the temporal dependencies in the patients’ time-series BGL data [52,53]. To handle data
loss the estimate from LSTM for the current time-instant is used as inputs.

As shown in Figure 6, the LSTM model for the blood glucose estimator has two hidden
layers, and it is unrolled in time to represent its sequence representation ability, as shown in
Figure 6. One can observe that output at each time point could be derived in addition to the
final time step. We use the past data over an observation window of 2 h to make a prediction
after 15 min for 1 h (4 samples) or more time steps. Thus, the LSTM model represents
the temporal correlations and helps us to predict BGLs after 1 h in advance so that this
can be used to handle data loss and physiological delays with existing CGM and provide
forecasting capability to the conventional BGL sensor. Figure 7, shows the flow of the LSTM
prediction module, where y and ŷ represent the BGL measurements and predicted value,
respectively. Besides, NC denotes the prediction horizon. yi, yi+1, yi+2, ..., yi+NC samples are
used to predict the BGL value ŷi+NC+1. The predicted BGL value ŷi+Nc+1 is given as input
to the next series to predict the BGL value. We denote such forecasting through predictions
carried from the current step as time-series segmentation. Here, Nc is used as the prediction
horizon with abuse of notation to denote that this differs from the conventional prediction
horizon of patient models.

Figure 6. Structure of the LSTM Network for Blood Glucose Level Predictions.



J. Clin. Med. 2023, 12, 2094 13 of 36

Figure 7. BGL prediction using time segmentation.

The LSTM is trained on 70% data omitting 4200–6000 min. Then during the testing
phase, the remaining 30% is used as with the usual approach used in the literature. Our
LSTM model could forecast multiple time steps ahead based on multi-variate factors, and
the forecasting step is repeated again during each horizon. This means that the forecast
is corrected at each step. This is a multivariate and multi-time step LSTM with a moving
horizon strategy. This means that in the current step, future time-step values are predicting
incorporating recent measurements, and the procedure is repeated. The trained model
was used to predict the final 30 % of the data. The performance metrics such as prediction
error range, RMSE, and MSE for the blood glucose estimator, were computed using the test
data, which is shown in Table 1, it shows that the LSTM can predict the BGL with an error
percentage of 3.06–5.16% for the patients.

Table 1. LSTM results for P1–P5.

S. No Prediction Error (%) Normalized RMSE Normalized MAE

P1 3.06 0.69 0.49
P2 5.12 0.96 0.89
P3 4.51 0.79 0.64
P4 5.02 0.92 0.85
P5 4.92 0.89 0.79

Table 1 shows the prediction error % for the test data, and in Figures 8 and 9 the red
traces show actual measured values, blue traces show predicted value in a receding horizon
manner as illustrated earlier. This means that the one-ahead sample that was estimated is
plotted, and the rest are discarded. The procedure is repeated during each time-instant.
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Figure 8. LSTM prediction result for P1.
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Figure 9. LSTM prediction result for P2.

The LSTM-based BGL forecasting tool needs to be deployed in the HDT framework.
This means the model needs to be stored and provide an output when one sample instance is
given as input, and output is obtained for the next few hours. In our framework, the model
was stored as JSON files automated using existing packages, and then when instantiated,
the forecast was provided from the model. The model is stored in JSON files as weights
and through model callback functions, the forecasts are provided as output.

Note 1: As with BGL forecasting, our HDT model also uses food nutrient estimation
using AI tools. The idea is to use food image recognition and using annotations as a feed-
back mechanism to improve the food nutrient estimation accuracy. However, the complete
module description is beyond the scope of this paper, and our assumption is that food
nutrients are available either through a food atlas or with a nutritionist’s recommendation.
However, in the implementation,a food nutrient estimator could be implemented and has
not been presented here, considering the focus of the paper.

3.2.2. Structured Time-Series Analysis
The structured-time series analysis is based on an unobserved components model

(UCM). The idea is to decompose the time-series data into trend, seasonal, cycle, and
regression components. Leading to a linear decomposition to understand the time-series
data. The structured time series provides a way to analyze time-series data for trends
that are useful for capturing aspects such as hyper and hypo conditions. In our HDT,
the structured time-series analyzer and miner module use the time-series data on BGL,
insulin, and food to inform trends, cyclic factors, seasonal term (daily/weekly) variations,
and errors. In addition, it also provides variance in these parameters. The generalized
UCM is given by,

yt = µt︸︷︷︸
trend

+ γt︸︷︷︸
Seasonal

+ ct︸︷︷︸
cycle

+
k

∑
j=1

β jxjt︸ ︷︷ ︸
explanatory

+ εt︸︷︷︸
irregular

, (6)

where yt (BGL versus Time) is the outcome at time instant t, xt is the input vector, β j is the
explanatory variables as in a linear regression, and εt is the irregular component. Typically
the trend component follows a normal distribution µt ∼ N (0, σ2) wherein σ2 models the
variance. The trend in our analysis captures both (level and trend). Trends model the slope
of the series in the absence of any other influencing variable. The UCM in our analysis is
locally linear and has a slope term (positive or negative). The seasonal component in our
analysis models the daily variations, and as the data samples are collected once in 15 min,
the seasonal component is modeled for 96 samples. This means a daily seasonal component
is considered in our analysis. The cycle component captures the cyclical aspects at time
frames much longer than the seasonal component. The time-series components and their
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variance provide useful insights into inter and intra-patient variability. A snapshot of the
structural time-series model is shown in Figure 10.

Figure 10. Structured Time-Series Analysis—The y-axis in the upper panel is BGL (mg/dL), and the
time interval is 15 min.

The prediction tools presented in this section provide valuable forecasts and estima-
tions on certain food and time-series evolution. To interpret patterns and their outcomes,
diagnostic tools are required. The next section presents the diagnostic module used in
our HDT.

3.3. Diagnostic Module

The diagnostic module uses multiple tools to draw inferences based on data and
prediction modules. Here, we illustrate the inferences from the time series that could be
drawn from such analysis. We use motif discovery and anomaly detection as examples.

Motif Discovery

Time-series motifs are sub-sequences of longer time series that have similar patterns.
Motifs indicate patterns that get repeated or the presence of similar patterns between two
time series. Using motifs, dictionaries of recurring series could be created that would
provide more insights into inter-patient and intra-patient variations. The motif discovery
methods in the literature are based on the sub-sequencing technique wherein certain
time-series samples are grouped and compared with similar sub-sequences. A quadratic
metric, usually their Euclidean distance, is measured to see whether the sub-sequences are
similar. A matrix constructed with the euclidean distances between sub-sequence is called
the distance matrix, and a matrix profile (MP) is a vector that stores Euclidean distance
between any sub-sequence within a time series and its neighbor [54]. The MP can be used
to study patterns (motif), detect anomalies, and discover shapelets, time-series chains,
and other structures that discover patterns in the time series. Further, MPs are used to
detect anomalies that could alert to possible wrong sensor readings or abnormal conditions,
an important aspect for building robustness in the system.

Using MP, similar patterns or periods having similar conditions (e.g., post-prandial
periods with similar CHO intake) could be detected. Further, changes in Euclidean distances
also reveal valuable information about the impact of influencing factors (e.g., activity
signature on the BGL evolution). The inter-patient motif discovery in patient P1 is shown in
Figure 11. It is evident that for similar CHO and insulin infusion profiles, the BGL patterns
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are similar. The Euclidean distance computed in this case is 2.01 (mg/dL in minutes),
indicating similar patterns.
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Figure 11. Time-Series Analysis: Motif Discovery between days of a P1. (Top) Dependent variable
(BGL) versus time whereas the bottom show independent (controllable) behaviors (insulin) and CHO
in food.

An increase in Euclidean distance is observed for dissimilar patterns as shown in
Figure 12. Such analysis provides the ability to discern different conditions.
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Figure 12. Time-Series Analysis: Motif Discovery between days of P1—The upper panel shows a
dependent variable (BGL) versus time whereas the lower panel shows independent (controllable)
behaviors (insulin) and the dependent variable CHO.

More detailed results with diagnostic tools based on time-series are presented in the
results section. By identifying similar patterns, the patient can understand influences such
as activities on BGL evolution. Still, patients require certain influencing factors posterior
to their actual outcomes. The explainability of the hyper and hypo conditions is quite
important in diagnosis and is the focus of the next section.

Explainable Diagnostics for Events

Another aspect of the diagnostic tool is the explanations provided for hyper and hypo
events through explainable artificial intelligence (XAI). While a matrix profile-based analy-
sis provides ways to explain patterns, individual samples causing a particular outcome are
explained using XAI.



J. Clin. Med. 2023, 12, 2094 17 of 36

The XAI is a technique to explain decisions to stakeholders. The Local Interpretable
Model-Agnostic Explanations (LIME) [55] is a tool that explains single data instances being
model agnostic. Explanations generated by LIME for data instance x are defined as:

explanation(x) = arg min
g∈G

L( f , g, πx) + Ω(g) (7)

where f () is the model, g() is the local explanation for instance x, and L is the loss func-
tion that measures the fidelity between f () and g() while keeping the model complexity
denoted by ω(g) low. The LIME uses a neighborhood πx∗ of the argument x∗ in which
approximation is sought. In general, g() denotes a class of interpretable models, G; such
models could be decision trees or other simple linear models.

Our explainable diagnostic tool has two components: the base-learner model and
eXplainable Artificial Intelligence (XAI). The eXtreme Gradient Boost (XGBoost) classifier is
used as the base learner, and the locally interpretable model agnostic explanations (LIME)
tool is used to explain hyper/hypo events that are acquired using the data-instance profiler
module. The XAI tool explains the factors that lead to hyper and hypo events in a patient,
thereby helping personalization and improving patient behavior by highlighting behaviors
that lead to hyper- and hypo-events. The results section shows explanations provided on
single data points using XAI.

3.4. Personalization and Management Module

This section describes the details of the E-T2D management module.

3.4.1. Adaptive Personalized Patient Model

The personalization module is responsible for precise insulin infusion, maintaining
BGL accurately within bounds, and handling patient-specific aspects. To handle BGL
variations due to geriatric factors, a semi-parametric regression model is used. The basic
idea here is to have an adaptive parameter estimation algorithm where the patient-specific
parameters are identified using current measurements and predictions. The geriatric factors
are embedded using parameters that denote these aspects, as explained in this section.

We present the personalized patient model and personalized insulin computation
algorithm based on the model predictive control technique. Our model is an adaptive
model that is learned from data samples, and the personalization algorithm infuses insulin
based on individual conditions. However, time-varying and nonlinear behaviors would
require an adaptable model whose parameters change with time. Such changes also explain
the influences of factors such as diet on the patient. Therefore, a patient model that is
simple and adaptable needs to be proposed. This section presents an adaptable patient
model that helps manage E-T2D toward building a personalized HDT [50]. The personal
glucose dynamics is described as

G(k + 1) = ζ1G(k) + ζ2 I(k) + ζ3CHO(k) (8)
The model in (8) captures the patient’s complex dynamics by considering the influences

of food and insulin.
G(k + 1) = H(k)w(k) + ε (9)

H(k) = [G(k) I(k) CHO(k)]

w(k) = [ζ1 ζ2 ζ3]
T

where ε is assumed to be normally distributed bounded additive noise with ‖(ε + εe)(k)‖2 ≤ α
with α ∈ R+.
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min
w(k)

NP

∑
k=0

λNP−k[(G(k + 1)− H(k)w(k))TΠ(k)(G(k + 1)

− H(k)w(k)]

s.t. Π(k) ∈ R+ (10)

In the recursive model parameter estimation, at each time instant k (k is the time step
for 15 mins), the optimization problem in (10) is solved to identify the parameter with
forgetting factor λ. Note that the forgetting factor might be adjusted for each patient. The
model adaptation steps are shown in Algorithm 1. The initial input to the algorithm is
inverse correlation matrix P and the forgetting factor λ. Once the new measurements from
the patient are obtained, the model will predict the BGL, and the algorithm checks the
difference between estimated and current BGL measurements, if there is an error, then the
parameters will be updated; otherwise, it keeps as same as the previous. The algorithm
uses the new measurements to adjust the model parameters w(k).

Algorithm 1: Dynamic Patient Model Parameter Estimation for BGL Prediction.

1 Input:P ∈ Rn ← Inverse Correlation Matrix,
2 λ← Forgetting factor
3 Measurement: G(k + 1), G(k), I(k) and CHO(k)
4 Estimation: Ĝ(k + 1) = H(k)w(k)
5 Estimation error: e(k) = Ĝ(k + 1)− G(k + 1)
6 if e(k) > 0 then
7 Gain Factor Update: Γ = ϕ/(λ + ϕ× HT)
8 Inverse Correlation Matrix Update: P = (P− Γ× ϕ)/λ
9 Parameter Update

10 else
11 No update
12 end
13 Output: w(k)

The adaptive model updates the parameters every computation time, i.e., 15 min. So
first, the model is updated and used to compute the insulin infusion for the next hour,
and the process repeats. During each time-instant, the model is adapted, and the optimal
insulin infusion is computed. To illustrate the performance of the personalized patient
module, estimates on P1–P5 and the actual measurements on CGM from clinical trial is
shown in Figure 13. One can see that personalized patient module provides more accurate
forecasts of the BGL variations as indicated by low RMSE (Table 2).

Table 2. Patient simulator Prediction results.

S. No
Prediction Error Range (mg/dL) Percentage of Error (%)

RMSE
Min Max Min Max

P1 −14.55 8.21 3.85 6.53 5.01
P2 −7.22 5.35 4.5 5.2 3.27
P3 −12.25 8.25 4.3 6.34 4.87
P4 −3.25 5.25 2.5 3.9 1.89
P5 −4.58 10.56 1.8 3.5 3.32



J. Clin. Med. 2023, 12, 2094 19 of 36

0 50 100 150 200 250 300
0

200

400

Time (Hour) - P1

B
G
L
in

m
g/
dl Predicted BGL Measured BGL

0 50 100 150 200 250 300
0

100

200

300

Time (Hour) - P2

B
G
L
in

m
g/
dl Predicted BGL Measured BGL

0 50 100 150 200 250 300
0

200

400

Time (Hour) - P3

B
G
L
in

m
g/
dl Predicted BGL Measured BGL

0 50 100 150 200 250 300
0

200

400

Time (Hour) - P4

B
G
L
in

m
g/
dl Predicted BGL Measured BGL

0 50 100 150 200 250 300
0

200

400

B
G
L
in

m
g/
dl Predicted BGL Measured BGL

Time (Hour) - P5

Figure 13. Model predictions for P1–P5—The time step is 15 min, and the BGL is predicted for one
step ahead.

Note 2: Adaptive patient model was validated against the data as well as conventional
Type 2 models. As usual, T2D dynamics are nonlinear, and computing model parameters
is quite cumbersome. However, the adaptive model presented in the paper mimics the
nonlinear dynamics efficiently, and the results of the comparison are not provided in the
paper due to space constraints.

3.4.2. Personalized Insulin Management Module

The proposed personalized insulin management system uses the BGL measurements
and patient model to compute the optimal insulin infusion to maintain BGL within rec-
ommended limits. To compute the optimal insulin infusion, it solves a multi-time step
optimization model whose objective is to reduce the BGL excursion through proper choice
of insulin, and the constraints for the problem are recommended BGL limits, patient
dynamics, and limits on insulin infusion rates.

Perturbation Terms for Geriatric Factors and Nutrient Intake

Traditionally, an MPC works in three steps: (i) update measurements, (ii) compute
control input using model, and (iii) apply the first among the computed control inputs
in every iteration as with traditional MPC approaches. The rest of the computed control
inputs are discarded by the MPC, and the procedure repeats during each time-step. This
is called the receding horizon control. The LB-MPC is a new concept wherein the idea is
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to fuse factors obtained from domain informed data-based modeling tools (e.g., machine
learning) to learn models or control actions (e.g., reinforcement learning).

More recently, LB-MPC is proliferating various application domains due to their ability
to model even abstract concepts within model or control actions [56]. To personalize and
precisely compute insulin infusion considering patient’s geriatric conditions, fusing domain
informed data-based models with conventional mathematical models is required. To this
extent, the LB-MPC approach is used as the personalization module in our HDT. The idea
is to use parametric models wherein during each computation there are parameters from
mathematical models and perturbation parameters that model patient specific aspects
(e.g., insulin sensitivity or diet influences). In our analysis, the perturbation parameter δa
represents the effect of geriatric influences on BGLs. Suppose that the LSTM forecast is
denoted by ŷ(k), whereas the model output is denoted by Ĝ(k). The LSTM models capture
future behaviors based on past measurements, whereas the mathematical model is used to
observe the insulin infusion effect in the future on BGLs.

At each time epoch k the model is updated and the future control moves are com-
puted by solving a multi-time step optimization model. The LB-MPC uses the adaptive
model of the patient and computes insulin infusion that manages BGL within specified
limits. Therefore, by introducing the perturbation term, both past and future behaviors are
included in the LB-MPC formulation. However, as the adaptive model is updated during
each time epoch, and computation runs for the prediction horizon Np, the model is not
updated during computation, but rather after each time epoch. With an abuse of notation
to denote the model parameters to be varying, we include the index k. The mathematical
disturbance parameter during each time epoch is given by,

ε1(k) = G(k + 1)− ζ1(k)(G(k)− ζ2(k)I(k)− ζ3(k)CHO(k) ∀{k = 1, 2, · · · , Np}, (11)

Equation (11) models the static disturbance term at time instant k + 1. However, the dis-
turbances could vary depending on the intermittent and time-varying aspects. Therefore,
to model the geriatric effects, a perturbation term is added to the model parameters:

G(k + 1) = (ζ1(t) + δa(k))G(k) + ζ2(t)I(k) + ζ3(k)CHO(k) + ε1(k), ∀{k = 1, 2, · · · , Np}, (12)

The perturbation term is computed as,

δa = η1 ×
ŷ(k + 1)
G(k + 1)

+ η2 ×
ŷ(k + 1)− ŷ(k)

h
, ∀{k = 1, 2, · · · , Np}, (13)

where η1, η2 and h denote the adaptation parameters and sampling time, respectively.
The values of adaptation parameters 0 < η1 < 1, 0 < η2 < 1. The first term in the
perturbation term (13) models the factor that adapts the perturbation parameter depending
on the error between the model estimate and LSTM estimate. The second term models the
adaptation w.r.t the slope of the BGL forecasts from the LSTM. These two terms together
model the perturbation term that captures geriatric effects on the patient. In essence,
the LSTM model provides predictions fusing food and insulin influences. These aspects are
captured using the parameter.

The LB-MPC tries to compute the optimal insulin that would maintain the BGL
within recommended bounds for each patient. Therefore, the decision variable is insulin
infusion. The objective aims to minimize insulin costs, and a slack cost term and variable
are added to allow for small constraint violations due to numerical issues that could be
avoided. The constraints are the personalized patient model, recommended BGL bounds
for the patient, insulin infusion, and non-negative slack variables. The LB-MPC solves the
optimization problem during each time-horizon and the optimization model is,
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min
I(k)

k+Np

∑
k=1

CT I(k) + Cγγ(k)

s.t.

G(k + 1) = (ζ1(k) + δa(k))G(k) + ζ2(k)I(k)

+ (ζ3(k) + δc(k))CHO(k) + ε(k) (14)

Gmin − γ(k) ≤ G(k) ≤ Gmax + γ(k)

Imin ≤ I(k) ≤ Imax

γ(k) ≥ 0 ∀k : 1 ≤ k ≤ Np

where γ(k) is the slack variable, which introduces a soft constraint for modeling small
variations in BGL over recommended limits.

Here, CT and Cγ denote the cost for constraint violations, which is usually a very
high value. The optimization model’s output is the insulin infusion for time instants
(k + 1) . . . (k + Np). In the MPC, the first among the computed insulin dosages—i.e., k + 1
is used as the insulin dosage while the rest of the computed ones are discarded—and the
procedure is repeated during the next time-instant. This is called the receding horizon or
moving horizon approach that is used within the MPC. The prediction horizon Np is the
duration for which the control inputs are computed, and Ts is the sampling period for the
LB-MPC. In our approach, a sampling period of 15 min was selected, and a prediction
horizon of 4 (one hour into the future) was used for most patients. The sampling period
of 15 min was selected to capture the dynamics of the patient physiological model. The
parameter variations model the patient-specific variations due to: food intake, insulin
efficiency, comorbid conditions, and other aspects. By designing an MPC using these
models and embedding knowledge of patients on the glycemic range, the proposed MPC
becomes an LB-MPC. Due to this integration and modeling, the LB-MPC becomes E-T2D
specific, i.e., it includes the geriatric influences inherently in the patient model. Further,
by using contextual patient data on multiple drugs, the glycemic range is defined. Using
these aspects the LB-MPC could not only integrate food influences on individuals but
could also provide personalized optimal dosing to patients by considering their geriatric
conditions. The software implementation aspects of the HDT are discussed in Appendix A.
The detailed outcome of the LB-MPC managing E-T2D is provided in the results section.

4. Results

This section illustrates the HDT’s efficacy in managing diabetes using personalized
recommendations, providing diagnostics, predictions, and other management. This is done
in two steps:

(i) Clinical trials for 14 days on 15 elderly patients to collect patient-relevant data and
blood glucose measurements. This is used for our modeling wherein an adaptive patient
model, LSTM, STA, XAI, and other models are obtained. In this phase, infusions were
done with insulin pumps pre-programmed based on diabetologist recommendations.

(ii) Simulations with the model to compute precision insulin infusion to avoid BGL
excursions in E-T2D patients exploiting the different HDT models. The MPC pre-
sented is a simulation result that uses the patient model obtained from clinical trials.
The diabetologist verified these results and confirmed the findings. Moreover, its
implementation with an insulin pump is feasible through pre-programmed inputs
from insulin pumps, as with clinical trials. However, due to constraints in volunteer
recruitment and re-admissions, only simulation results are provided in the paper.

From clinical trials, data collected from 15 elderly diabetic patients is presented.
The patients had co-morbid conditions and multiple drug intakes. The volunteers were
recruited after initial clinical and ethical clearance. Then the data was collected for the
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initial study and is illustrated in the first section. This data had multiple facets: contextual
data, medical records, patient-specific data, images, annotations, temporal data, and others.
Similarly, time-series data was collected for blood glucose measurements. Alongside other
data such as activity levels, nutrient intake, food timings, insulin infusion, etc., were used
by HDT models to create knowledge from the aggregated data. The data was collected
using the IoMT architecture proposed in our study.

Similarly, using dynamical models, time-evolution and optimal insulin infusion could
be computed by using the LB-MPC approach described in this paper. During insulin com-
putations, the CHO, and current blood glucose levels are the inputs. However, for geriatric
patients, the control BGL rate could vary depending on their personal conditions. Currently,
such aspects are identified from historical information and diabetologist recommendations.
The DT in this paper uses information from diabetologists that are contextual patient data:
hyper and hypo constraints that could be achieved for a particular patient. However,
by fusing dynamical models with domain-informed data-based models, the HDT obtains
deeper insights and proposes suitable actions considering aspects of geriatric conditions
of the individual patients. This extends the current capabilities for personalizing and
managing diabetes using conventional tools. In what follows the results from these aspects
are presented.

4.1. Clinical Data Description

During the data collection phase, 15 elderly patients with varied geriatric conditions
were recruited at Jothydev’s Diabetes Research Center (JDRC), Trivandrum, India. The data
was collected from 2017–2018. The data collection had two phases: (i) patient recruitment
and initial data collection and (ii) clinical data collection. In the patient recruitment phase,
contextual data and medical data such as patient name, co-morbid conditions, multiple
drug intake, patient-specific data, average calories, anthropometric data (e.g., body mass
index), and others were recorded. These data were converted to contextual data as a JSON
file (JavaScript Object Notation). Further, the data was entered and stored as medical
records in the hospital.

Note 3: The patient’s name and other personal aspects were coded with suitable
protocols to avoid leakage of personal data. The registered ethics committee registration
number for this data collection process is ECR/115/Indt/KL/2013/RR-16 issued under
rule 122DD of the Drugs and cosmetics rules 1945, Government of India.

Having recruited volunteers and collected contextual data, the next step was to for-
mulate the clinical trials. As this involved patient data collection, a protocol needed to be
established for the clinical trial. First, the protocol volunteers were defined. Only E-T2D
patients were recruited for the clinical trials whose contextual data had already been ob-
tained. Second, the testing procedure was to use the CGM for measuring continuously the
BGL. In this condition, the patients would be continuously monitored in the hospital in
a restrictive environment. Third, in the data acquisition phase, BGL was measured every
15 min with insulin infusion using an insulin pump. The basal and bolus values of insulin
infusion were recorded from the pump. Additionally, information about the patient’s food
intake: breakfast, lunch, snacks, and dinner was collected by a dietitian based on the food
exchange list that was being served to the patients. The testing protocol used in our study
is illustrated in Figure 14.
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Subjects:

1. Only elderly patients with type 2 diabetes will be participating in the clinical

trials.

2. The patient’s sex, age, body mass index (BMI), co-morbidity conditions, and

multiple drug intakes are collected.

Testing Procedure:

1. The continuous glucose monitoring sensor (CGM) and the insulin pump will be

attached to the patient body.

2. Continuous tests: CGM continuously measures the interstitial glucose level

(IGL) for every 15 min. (i.e., 96 times per day).

3. The patients are continuously monitored for 14 days.

Data Acquisition:

1. The IGL of a patient was measured every 15 min by using the CGM. Basal,

bolus insulin infusion values are noted for every patients.

2. The information about patient food (breakfast, lunch, snack, and dinner) were

collected by the dietitian. Co-morbidity conditions and multiple drug intake of

a patient are collected.

3. Insulin infusion, meal intake, co-morbidity and multiple drug intake mainly

affects the blood glucose level of a patient.

Figure 14. Testing Protocol.

4.2. Clinical Data Collection

During the clinical data collection period, blood glucose levels, CHO intake, and
insulin infusion for the patients were collected for 14 days. The freestyle Libre Pro CGM
sensor was used to collect the glucose level. The sensor insertion, removal, and trou-
bleshooting were performed by a trained physician at JDRC. The insulin was administered
by using the Medtronic 722 insulin pump. The data was collected every 15 min and was
transmitted to the cloud to be stored/retrieved for modeling. The CGM sensor had to be
calibrated with finger stick blood glucose measurements 2 or 3 times per day. The patient
details and contextual data are shown in Table 3.

Figure 15 shows the pie chart representation of 15 E-T2D patients’ data collected at
JDRC. The first figure shows the BMI distribution among the volunteers used in our study.
Based on BMI the patients are classified into three categories: patients’ BMI values between
18–25 are considered low BMI, between 25–30 are categorized as medium BMI, and above
30 is considered as high BMI. The distribution is indicative of the actual occurrence of
patients. As for activity levels, 33% of the people were active while the remaining 67% were
either moderate or sedentary. A close look at the co-morbidity of the patients under study:
the distribution shows Hypothyroidism, dyslipidemia, hypertension, heart disease, kidney
disease, post-kidney and heart surgery, and sigmoid colon, and multiple drug intake.

Figure 16 shows the snapshot of one-day data collected from patients. It contains BGL
variations, insulin infusion and CHO present in patient food. The CHO present in the food
was determined and logged by a trained dietitian at the time of the study. Three meals,
and snacks timed to vary around 07:30 (Meal 1), 13:30 (Meal 2), 16 (snack), 20:00 (Meal 3) ±
30 min. The number of meals may vary based on the patient’s condition and was recorded
as contextual data.
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Table 3. Patient Details.

S. No Age Sex BMI Co-Morbidity Conditions Target BGL Range
(mg/dL) Avg. CHO/day (g) Life Style Oral Drugs

P1 63 M 24.2 Hypothyroidism, Dyslipidemia 80–180 240 Sedentary Glycomet 250 mg

P2 60 F 23.6 Hypothyroidism, Dyslipidemia, hypertension
(HTN) 80–150 300 Sedentary Metadoze-1, Hepsodil-1, Victoza-1,

Blisto-1/2

P3 36 F 32.4 Dyslipidemia, HTN, kidney transplant 80–140 300 Sedentary Trajenta Duo 2.5/500, Metadose IPR

P4 59 M 25.7 Liver problem 80–180 320 Active Glycomet, Metadoze

P5 63 M 27.5 Dyslipidemia, Heart disease, CKD 80–180 240 Sedentary
Glycomet, Glimepiride, Aplazar, D-
Rise, Metadoze, Carfer, Ril 2.5, Pre-
ganerve, Roliptin, Trajenta, Cilnipres

P6 72 M 25.1 HTN, mild NPDR 80–180 280 Active Kombiglyza 5/500, Jardiance-25 mg,
Cetapin-500

P7 79 M 32.1 CA sigmoid colon, CKD, HTN 80–150 220 Active Glycomet 300 mg, Metadoze.

P8 80 F 31.9 CKD, Hypertension 80–180 20 Sedentary GP-0.5, Metadoze

P9 58 F 23.1 Hypothyroidism, Dyslipidemia 70–180 300 Sedentary Metadoze-1, Roliptin

P10 55 M 23.2 Dyslipidemia, CKD 80–180 234 Sedentary Metafort 500 mg, victoza injection

P11 57 M 30.1 Hypothyroidism, Dyslipidemia 80–180 270 Active Diafer 250, Jerdiance 100 mg

P12 66 F 30.8 Hypothyroidism, Dyslipidemia 80–140 300 Active Metafort 1000 mg, Gride 1 mg, Vic-
toza injection

P13 70 F 24.7 HTN, Coronary artery bypass graft surgery
(CABG) 90–180 280 Sedentary T-Semi-Amaryl 0.5, PPG Met 0.2

P14 65 F 34.5 Dyslipidemia, HTN, Anemia, CABG 80–140 320 Sedentary Diafer 250

P15 62 F 29.1 CKD, HTN 90–180 250 Sedentary T-semi-Armyl 0.5 mg
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Figure 15. Patient data.
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Figure 16. Snap-shot of one day data collected from a patient.

4.3. Vital Signs and Activity Data

As the BGL is influenced by the activity levels recording them helps identify their
influences. Especially, activity influences patients having co-morbidity and multiple drug
intake is very complex to understand. Therefore, by exploiting the activity data recorded
through an integrated sensor that measures vital signs (e.g., body temperature) to activity
levels using an accelerometer is used as described earlier. These values are recorded using
suitable sensors and interfaced to a mobile app. The sensors and mobile app are an integral
part of the IoMT architecture. The data displayed on the mobile app is shown in Figure 17.

Figure 17. Vital Sign Monitoring Using Mobile App—Top figure shows the body temperature data,
the middle shows the heart rate data, and the bottom figure shows SpO2 data.
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In our analysis, activity levels were classified into active, moderate, and sedentary.
The lifestyle of a patient was detected by using the CC2650 sensor tag that has an ac-
celerometer to detect the patients activity. This data is transferred to the cloud via the edge
node using Wi-Fi. Activities can be detected by x, y, and z axis positions. This activity
information about the patient is helpful to personalize the insulin infusion.

4.4. Prediction Module Data Analysis

During the exploratory data analysis (EDA), studies were performed on contextual and
temporal data collected from clinical and pre-clinical trial phases, and it would be helpful
to enumerate the data types for the contextual and temporal data used in this analysis
(e.g., CHO, BGL, activity, etc). Then the data was fused to perform EDA for analysis. First,
the auto-correlation function (ACF) and partial auto-correlation function (PACF) were
evaluated to understand the dependency of the current samples on the past values. The
ACF and PACF plots for patient P1 are shown in Figure 18. An analysis of the ACF shows
that there is a very strong correlation between the current value and past samples. This
shows that regression-based models can estimate the current BGL from past samples for
certain patients. However, the PACF plot shows that not more than two samples near to the
current one may be useful in predicting it. Therefore, time-varying intermittent behaviors,
causal variables, and exogenous factors may influence BGL predictions.

Figure 18. ACF and PACF plot for P1.

4.5. HDT Diagnostic Module Results

As stated earlier, the HDT uses two types of models: domain-informed data-based and
dynamical models. This section first describes the results of domain-informed data-based
models and how fusing data helps understand the influences of various geriatric and
influencing factors. This section illustrates HDTs’ ability to detect interpersonal variations
considering time-series data patterns. Patients’ temporal data is analyzed for motifs
that denote the existence of patterns in time series that could discern scenarios with
similar patterns, but the magnitudes may differ due to certain factors. By detecting motifs
influencing factors could be found.

Motif Detection for Interpersonal Variations Detection

This example illustrates the HDTs’ ability to detect changes in activity through data-
driven techniques. As an example, time-series data for patient P1 is presented wherein
two different scenarios are shown for day 9 and day 10 (see, Figure 19), and the euclidean
distance is 5.31 (mg/dL in minutes) shown in Table 4. These are two simultaneous days
with similar patterns of diet intake and insulin infusion. Nevertheless, the patient P1 had
an exercise activity; walking for about 30 min on day 9 at morning 8:30 AM. Consequently,
one can observe that the patterns for BGL are quite different or vary in magnitude. Day 9
with activity showed a lower BGL than day 10. This is primarily due to walking activity.
Using such patterns the DT learns intricate aspects about the patient, such as sensitivity
to activity or even a particular diet. This is a very important feature for personalization;
as for managing BGL, the DT may suggest activities on a particular day whenever sim-
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ilar patterns are detected. Note though that, the result presented here is for illustrative
purposes only. Similarly, patterns were observed for other aspects, such as multiple drug
intake, nutrient variations, and others. The example demonstrates DTs’ ability to draw
additional conclusions going beyond existing features with other techniques. Besides, such
observation could be embedded in diabetes management as well.
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Figure 19. Time-Series Analysis: Motif Discovery between days 9 and 10 of P1.

Table 4. Motif Pattern Analysis—Intra patient analysis of P1.

S. No Days Compared Euclidean Distance

1 Day 1 & 2 3.88
2 Day 3 & 4 6.15
3 Day 5 & 6 5.55
4 Day 7 & 8 2.01
5 Day 9 & 10 5.31
6 Day 11 & 12 6.27

4.6. Motif Based Intra-Personal Variations Detection

This section presents the HDT data-driven model’s capability to detect intra-personal
variations and draw conclusions about personalization. In this analysis, patient P1 has
co-morbid conditions and multiple drug intake compared to patient P4 with a liver ailment.
However, their age, activity levels, and diet intake are similar. Figure 20 shows the blood
glucose level motifs for the two patients with similar CHO intakes. Even with their initial
conditions being similar, the pattern indicates that patient P1 has a higher BGL compared
to patient P4 in this time period. This is mainly due to co-morbidity and multiple drug
influences. Similarly, the patient P4 maintains a better BGL profile than P1.

Learning such aspects from data is not possible with the current models available in
the literature.

Similarly, comparison of the motif between two patients P4 and P13 is shown in
Figure 21. The BGL magnitude for P4 is less compared to P13 this is because of activity
levels, co-morbidity, and multiple drug intake. Even though the average CHO per day for
P4 is high, the patient has a lower magnitude of BGL.
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Figure 20. Motif Discovery between patient P1&P4: Motif shows days with similar patterns. Patient
P4 has lower BGL than P1 due to active lifestyle and relatively lower co-morbid conditions.
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Figure 21. Time-Series Analysis: Motif Discovery between P4&P13—P4 has a lower magnitude of
BGL profile even with high average CHO and less insulin infusion.

These results not only illustrate the HDTs’ ability to use intra-personal variations to
personalize diabetes management but also prescribe the infusing of insulin depending on
their conditions. By fusing data with patient models in an HDT, such capabilities could be
enabled, such aspects are unexplored for conventional models.

4.7. Personalization Module with XAI

Personalized explanations based on recorded samples help avert critical conditions.
The explanations provided for 3 different samples are shown in Figure 22a–c. The bars on
the top provide the probability of the sample to within the euglycemic range or otherwise.
Figure 22a shows a case with a higher probability (0.59) to be in the hypo/hyper range
due to basal, food, and effective insulin. Whereas the second sample indicates food as a
major factor (see, Figure 22b). Similarly, sample Figure 22c shows that food is a major factor
pushing towards hyper-probability. This indicates that the patient is influenced by CHO
intake and her bolus insulin has to be increased.
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Figure 22. Explanations for three randomly selected samples of patient P1. (a): An actual sample
in the hyperglycemic range detected with high probability through XAI as basal value of 0.02,
(b): sample 2 that is in Euglycemic range being detected with high probability with Insulin actual
values, (c): Sample in Euglycemic range detected with probability of 0.64 through basal and bolus

Patient P3, a female aged 36 and having a kidney transplant, has an average daily CHO
consumption of 300 g. A glycemic range of 80–140 [mg/dL] is recommended. Figure 23a
shows a case with a higher probability of being in hypo or hyper conditions because of
food, basal, and bolus insulin values. The second sample Figure 23b also indicates the
higher probability of hypo/hyper conditions, the third sample shown in Figure 23c also
indicates that higher probability in hypo/hyper conditions. From this, we can see that the
personalization module with XAI reveals that both basal and bolus (effective insulin) are
the main factors influencing the BGL of the patient as in Figure 23 suggesting a sensitive
insulin infusion due to co-morbid conditions.

Figure 23. Explanations for three randomly selected samples of patient P1. (a): Sample showing
hyper condition and explained through basal and bolus values even though CHO is low, (b): A hyper
glycemic sample explained through basal values even when the food CHO is low, and (c): random
sample detected to be hyper glycemic based on basal and bolus values.

4.8. BGL Management through Precision Insulin Infusion

This section describes the HDT-based BGL management module for E-T2D patients
that handles their geriatric challenges. The module personalizes insulin infusion to manage
BGL within the target range. To compute the insulin infusion, the HDT has a patient model
with parameters modeling their food and insulin influences on BGL. The current BGL
measurements are obtained from sensors; food influences are obtained from the mobile
app and food nutrient prediction algorithm. The HDT-based BGL management module
computes the precise insulin infusion for the patient considering geriatric conditions.
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The personalized optimal insulin dosage to maintain the BGL within limits is computed
using the MPC approach proposed in this paper.

The HDT will mimic the patient’s glucose dynamics, and the MPC will compute the
BGL within the target range. The results were studied through simulations on 15 patient
models for 14 days of data on food and insulin infusion. The results are validated against
the clinical data. A control band of 80–180 mg dL−1 is recommended for Patient P1 by
the physician, mainly due to co-morbid conditions and patient history. Figure 24 shows
the comparison between uncontrolled clinical trials and HDT-based control scenarios.
During clinical trial, P1 had 363 hyper and 113 hypo events, whereas this was reduced to
99 hyper and 72 hypo events with LB-MPC.
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Figure 24. Insulin recommendation and BGL for P1—Top panel shows the comparison between
uncontrolled BGL variations during the clinical trial and controlled BGL using HDT framework. The
middle plot shows insulin infusion during the clinical trial, whereas insulin recommendation from
HDT is shown in the bottom plot.

A target range of 80–150 mg/dL was recommended for Patient (P2) by the physi-
cian based on patient. Comparisons between clinical trials and personalized APs’ BGL
regulation are shown in Figure 25. Patient P2’s clinical data were collected for 13 days
because of the malfunction present in the CGM device. Insulin recommendation from
HDT maintains the BGL within the bands specified by the physician even with high CHO
consumption, co-morbid conditions multiple drug intake. During clinical trials, P2 is sub-
jected to 478 hyper-glycemic and 104 hypoglycemic events. whereas this was reduced to
28 hyper events, and there are no hypo events with insulin recommendation from HDT.
Furthermore, the patient used 350 Units of insulin in 13 days, but with LB-MPC, this is
reduced to 250 Units, i.e., a 28.5% reduction over 13 days, the number of insulin infusion
events was reduced from 96 to 70 times per day. This result demonstrates personalized
AP’s ability to regulate BGL in patients with high CHO intake, co-morbidity, and multiple
drug intake.
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Figure 25. Insulin recommendation and BGL for P2—Comparison between uncontrolled clinical
trial and controlled BGL excursions with HDT framework is shown in the top plot. The middle plot
shows the insulin recommendation during the clinical trial, and the bottom plot shows the insulin
recommendation from HDT.

Patient (P13) suffers from hyperglycemia during clinical trials, even with insulin
infusion. Moreover, P13 had heart surgery and hypertension. The target BGL range
recommended by the physician is 90 to 180 mg/dL. Comparisons with clinical trials and
personalized AP control are shown in Figure 26. While in uncontrolled trials, there were
1114 hyper-glycemic episodes, there were no events recorded with LB-MPC. Furthermore,
patient (P13) was administered 550 units during the trial period, whereas 485 units were
required for maintaining the BGL using the HDT, reduced by 14.5%, the insulin infusion
events were reduced from 96 to 80 times per day. These results demonstrate that the insulin
recommendation from the HDT can not only regulate the BGL for patients with significant
hyper-glycemic events but with reduced insulin infusion.
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Figure 26. Insulin recommendation and BGL for P13—Comparison between uncontrolled clinical
trial and controlled BGL excursions with HDT framework is shown in the top plot. The middle
plot shows the insulin recommendation during the clinical trial. The bottom plot shows insulin
recommendations from HDT.
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The time-in-range, time spent in hyper, and time spent in hypo conditions comparison
between conventional insulin therapy and HDT-based personalized insulin recommenda-
tion is shown in Table 5.

Table 5. Performance metrics for personalized AP.

S. No
HDT Based PM Conventional Insulin Therapy

TIR (%) Time Spent in Hypo
(%)

Time Spent in Hyper
(%)

TIR (%) Time Spent in Hypo
(%)

Time Spent in Hyper
(%)

P1 87.1 5.4 7.5 63 8.6 27.6

P2 97 0 2.2 53 8.32 38.2

P3 96 3.7 0 82 17.4 0

P4 96.2 3.7 0 75 9.7 14.5

P5 84 0 15.7 42 5.5 52.4

P6 91 5.2 3.3 67 17 14.7

P7 94 2.2 3.7 83 3 12

P8 93 0.3 5.9 64 1.1 34.2

P9 92 1.4 5.9 73 11.5 14

P10 88 2.9 2.9 83 8.9 7

P11 90 1.4 11.7 42 5.4 51

P12 88 8.9 2.9 43 13.8 21.3

P13 87 0 13 2.3 0 97.6

P14 92 2.9 5.9 57 4.7 37.3

P15 88 7.4 3.7 65 21.8 13

The Percentage of improvement in TIR for 15 patients with HDT-based personalized
BGL management is shown in Figure 27. This shows that the TIR is increased from 3–75%
to 86–97%. Figures 28 and 29 show the percentage of improvement in hypo and hyper
conditions with HDT-based personalized BGL management. This shows that HDT-based
personalized BGL management can reduce the time spent in hypo from 0–22% to 0–9%,
and percentage of time spent hyper is also reduced from 0–98 % to 0–12%.
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Figure 27. Percent improvement in Time in Range for 15 patients.
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Figure 28. Percent improvement in hypo events for 15 patients with HDT.
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Figure 29. Percent improvement in hyper events for 15 patients with HDT.

5. Conclusions

This paper presented a Human Digital Twin (HDT) framework for Elderly Type-2 Dia-
betes (E-T2D). The HDT enables personalization and precise insulin infusion considering
specific patient aspects. Further, the HDT provided deeper insights by aggregating various
data: contextual, clinical, patient-specific, etc. Second, the HDT has a suite of models that
can leverage this data and provide outcomes that can be used to obtain deeper insights into
E-T2D. These models combined deep-learning models for time-series forecasting, image
processing, and others. Finally, a mathematical model that can adapt its parameter based
on clinical data is also proposed. Exploiting the deep-learning tools and mathematical
models, a learning-based MPC is proposed that can personalize insulin infusion depending
on the patient’s geriatric conditions. The HDT design and development aspects are also
discussed. Finally, the HDT implementation is deployed and tested on 15 E-T2D patients
through clinical trials and simulations. Our results suggest that by personalizing diabetes
treatment through HDT enhances the time-in-range, reduces the hyper and hypo events,
and more importantly, reduces insulin infusion showing its efficacy in managing diabetes.
Extending the clinical trials for more co-morbid patients and studying it for a large number
of population is the future course of this study.
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Appendix A

Software Implementation

The software implementation aspects of the HDT are discussed in this section. The soft-
ware architecture has two parts: front-end and back-end. The front-end was implemented
with hypertext modeling language (HTML) pages orchestrated by Flask package from
Python. Conditional statements and other aspects were implemented using Jinja2 tem-
plating engine for use with Python. The front-end and back-end were orchestrated using
Python script. Data was stored in comma separated variable file and displayed using the
graphical display tools in Python.

The description module has interfaces to collect the data and store it in the cloud using
the IoMT architecture. The implementation was done on a private cloud using Python
scripts. It collects the sensed information and stores the data for retrieval. The Python was
used to create these databases and display the data. Similarly, the prediction module is
based on time-series modeling, and packages in Python such as Keras, Stumpy, Numpy,
and other standard packages are used for analyzing the time-series data. LIME Python
package was used to implement the explainable AI (XAI). LB-MPC implementation was
done with GLPK linprog in a Python environment to personalize the insulin infusion.

In the prediction module Python package, Keras was used to multi-variate and multi-
time step prediction of BGL samples. Figure 7 shows the flow of BGL prediction using LSTM
from Keras. The structured time series analysis was performed by using the TensorFlow
package from the Python environment. This provides time-series trends to capture the
hyper and hypo conditions. Similarly, the Python environment was used in the prediction
module to analyze the food and time-series evolution.

To interpret patterns and their outcomes in the diagnostic module, the Python package
Stumpy was used to analyze the motif patterns. The results were used to analyze the inter
and intra-patient variabilities. By analyzing activity inferences, pattern recognition, and
contextual mapping this module can give alerts to the patient.

To personalize the insulin infusion, the management module uses the LB-MPC. It was
implemented using GLPK linprog from a Python environment to compute the personalized
insulin infusion. The performance of the HDT-based personalized management was ana-
lyzed using various metrics (e.g., Time In Range (TIR), hypo, and hyper events). Software
implementation was simplified with Python used across the stack for implementation and
the choice was dictated by the hardware’s ability to work with the software selected as well.
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